标准差(StandardDeviation),也称均方差(meansquareerror),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。方差是各个数据与平均数之差的平方的平均数。
公式:
1、方差s=[(x1-x)^2+(x2-x)^2+(xn-x)^2]/n(x为平均数)
2、标准差=方差的算术平方根
它们的意义:
1、方差的意义在于反映了一组数据与其平均值的偏离程度;
2、方差是衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。
3、方差的特性在于:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
4、标准差是方差的算术平方根,意义在于反映一个数据集的离散程度。
迷你百科简约而不简单